

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Comparison of High Power Non-Isolated Multilevel DC-DC Converters for Medium-Voltage Battery Storage Applications

Milos Stojadinovic, Jürgen Biela Laboratory for High Power Electronic Systems Physikstrasse 3 8092 Zürich, Switzerland stojadinovic@hpe.ee.ethz.ch

Abstract

In this paper 4-level neutral-point-clamped (4L-NPC), 4-level flying-capacitor (4L-FC) and 4-level neutral-point clamped Cuk (4L-NPC-Cuk) converter topologies for multilevel DC-DC buck-boost converter for medium-voltage battery storage applications are compared with respect to efficiency and power density. The comprehensive comparison is performed with multi domain models and optimization procedures. For the converters, pareto-fronts are calculated for different operating frequencies in order to find the optimal design with respect to the specified minimum efficiency.

Battery Voltage V _{in}	530 890 V
DC Link Voltage V _{out}	2800 V
System Power	4 MW
Efficiency	> 95 %

Utility

Multi-Level Converter Topologies

4-Level Neutral-Point Clamped Topology (4L-NPC)

- Two level operation identical to basic buck-boost operation.
- Diodes D_{c1} D_{c6} are low current devices used for clamping only.

4-Level Neutral Point Clamped Cuk Topology (4L-NPC Cuk)

 Reduced inductor size due to coupling compared to regular NPC topology.

• Larger volume of the capacitor bank compared to regular NPC topology.

 Current ripple reduction sensitive to magnetic component parameter change.

System Design

• Frequency multiplication of the inductor current ripple (i.e. lower inductance compared to NPC topology).

$$\frac{L_{FC}}{L_{NPC}} = \frac{1}{3} \cdot \left(1 - \frac{2V_{in}}{V_{out} - V_{in}}\right)$$

• High currents flowing through capacitors C_1 and C_2 .

• $V_{C_1} > V_{in}$ for proper operation.

Example circuit schematic of the modular system with 4L-FC topology (8 interleaved modules).

Optimization Results			
Optimization Algorithm	Results for Nominal Conditions	Sensitivity Analysis	Scalability Analysis
Specification of the Parameters V _{in} / V _{out} / P _{out} / D _{max} T _{T max} / T _{core max} / T _A / R _{th IGBT}	98.5 98 4L-NPC 98 2kHz 4L-NPC-Cuk	Modified Technologies for the Sensitivity Analysis.	98

	Nominal Conditions
Output Power	4 MW
Input Voltage	530 V
Output Voltage	2800 V

2X IIICIEase
2x increase
2x increase
2x decrease
2x decrease
2x decrease
$T=60 \degree C \rightarrow 45 \degree C$
<i>T</i> =60 °C → 25 °C

Pareto front with the added points resulting from the technology value modifications for the 4L-FC converter

System pareto-fronts for the 4L-FC converter with scaled operating points.

- Sensitivity Analysis: Modification of the technology values and the influence it has on power density of the system.
- Scalability Analysis: Reduction in the module power and output voltage values and the influence it has on power density of the system.

Optimal Design of 4L-FC for Nominal Load

Optimal Inductor Design for the 4L-FC Circuit.

Resulting System with 8 Interleaved Modules.

Module Design & Conclusion

Simplified Mechanical Drawing of a Single Module of the 4L-FC Interleaved System

Core Material	METGLAS2605SA1
Inductance	115 µH
Number of Turns	9
HF Litz Wire	5.000 x 0.36 mm
Current Density	1.8 A/mm ²
Total Losses	357 W
Temperature Rise	75 K
Ambient Temperature	25 °C

Power (8 Modules Interleaved)	4 MW
Module Power	500 kW
Frequency	5000 Hz
Maximum Efficiency	97.4 %
Volume	438 dm ³
Power Density	9.13 kW/dm ³
Ambient Temperature	45 °C
Cooling Water Temperature	25 °C

Components		
Semiconductors	Infineon FZ1600R17HP4	
Capacitors	Cornell Dubilier 944U	
Core Material	METGLAS2605SA1	
Heat Sink	AavFin Liquid Cold Plates	

evaluated with respect to power density and efficiency for medium-voltage battery storage applications.

• 4L-FC topology results in the most compact system.

- From the sensitivity analysis, biggest increase of the power density is achieved by investing in a better colling system and more efficient switching components.
- From the scalability analysis, further volume reductions can be achieved by properly selecting the module power level.

Swiss Competence Center for Energy Research Efficient Technologies and Systems for Mobility